Exploiting heterogeneity for greater energy efficiency of SoCs

From modeling to power management

FETCH 2020

Sébastien Bilavarn

Outline

- Heterogeneity and energy efficiency
- Problem decomposition
 - System level modeling and design
 - Power and resource management
 - Elements of energy efficiency improvements
- Application study
- Conclusion and perspectives

Technological challenges

- Driven by critical energy efficiency requirements
 - Rise of connected devices
 - More communications (5G, ...)
 - Bigger infrastructure development (cloud, datacenters, VoD, ...)
 - Demanding application domains (blockchain, AI, automotive, ...)

→ Boom in energy demands for many application domains

Technological challenges

With a continuous increase of around 8% per year, this share could double in 2025 and reach 8% – the current level of emissions for cars and two-wheeled vehicles presently

→ Significant energy efficiency improvements are needed (>> x10)

Problem statement

- General SoC / application mapping overview
 - Heterogeneity
 - big.LITTLE, DynamIQ
 - Complexity
 - Abstraction
- Determining factors of efficiency
 - System properly designed
 - System level modeling and design
 - Manage execution of the system
 - Scheduling, power and resource management

- Power modeling at system level
 - Homogeneous multiprocessor platforms
- Allowing higher degrees of abstraction
 - Load balancing leads to characteristic power values
 - Promote homogeneous multithreading
 - → Simple power estimation

Parallel H.264 decoder

	Quad core ARM11 MPCore	8 threads	4 threads	2 threads	1 thread	0 thread
	1 core	633 mW	634 mW	636, mW	636 mW	361 mW
	2 cores	885 mW	878 mW	880 mW	637 mW	364 mW
	3 cores	1034 mW	932 mW	882 mW	637 mW	363 mW
	4 cores	1256 mW	1187 mW	867 mW	642 mW	355 mW
	AND DUEDIA (0007	0040)				

ANR PHERMA (2007 – 2010)

- Power modeling at system level
 - Homogeneous multiprocessor platforms / DVFS
- Allowing higher degrees of abstraction

 $P = f(N_{cores}, F)$

Reliable energy estimation

- At function level
- From limited, meaningful parameters

Design space exploration

- Function mapping
- Parallelism

Extensions

- Multi/many core
- Core heterogeneity
- → Realistic power analysis of full application mapping on multiprocessor

Power modeling at system level

Heterogeneous multiprocessor platforms – Reconfigurable

acceleration

- FPGA energy model
 - At function level (HLS)

Allow full Hw/Sw functions and global application power characterization

	Function (i)	Execution Unit (j)	$T_{i,j}$, ms	$\mathbf{P}_{i,j}^{idle}/\mathbf{P}_{i,j}^{run}$, mW	N ^{cell} ; N ^{bram} ; N ^{dsp}	
	$Img_load(i = 1)$					
	dilate(i = 2)	Core (j = [1; 2])	17.5			Sw: 7,21 mJ Hw: 0,472 mJ
		$RR (j \geq 3)$	4.3	38/63	2718;0;0	HW: 0,472 MJ
	$erode_fifo(i = 3)$					

→ Realistic analysis of full application mapping on multiprocessor / Hw accel

- Power modeling at system level
 - Heterogeneous platforms Dynamic reconfiguration (DPR)
- Reconfiguration control modeling
- Higher design space complexity
 - FPGA partitioning (Partial Reconfigurable Regions, PRR)
 - Scheduling

ANR Open-PEOPLE (2009 - 2012)

→ Realistic analysis of full application mapping on multiprocessor / DPR accel

- System level design
 - Heterogeneous platforms DPR
- Improve system level design and mapping
 - More focus on energy
 - Low complexity power estimation
 - Design space exploration
 - Methodic approach
 - FPGA partitioning and scheduling (DPR)
 - → Further savings from fine management of power at runtime

Exhaustive exploration:
10 functions / 6 Hw functions
> 1M solutions explored in a few seconds

- Power management and power strategies
 - Workload based (general purpose)
 - If the system is busy, run at maximum frequency
 - When the system is less busy, decrease frequency
- For video processing, this strategy leads to maximum power consumption
- There's room for more energy savings

SoC power consumption

→ Specialized power strategies

- Specialized power strategies
 - Deadline (real-time) scheduling / DVFS
- Energy gains
 - Application dependent (slack)
 - Platform dependent (operating points, silicon technology)
 - → System level analysis of power strategies
 - e.g. DVFS or idle states ?

COMCAS (CATRENE 2009 – 2012)

- Specialized power strategies
 - Energy Aware Heterogeneous Scheduler (EAHS)
 - Homogeneous multicore (without DVFS) + DPR
- Earliest Deadline First (EDF)
- Releasing real-time constraint to promote energy efficiency
 - A tuning parameter allows to choose different power / performance tradeoffs
- At each scheduling event, a cost function evaluates all possible implementations for ready tasks
 - Decisions rely on efficient decision support and estimators
- Energy gains
 - 44% against Sw execution
 - H.264 decoder / Zynq: 18 functions / 12 Hw functions

- Further saving potential lies in specialized low power scheduling
 - Up to 50%, probably more when addressing heterogeneity
 - Use specialized power strategies based on application domain properties (e.g. real-time, video processing, ...)
 - Include power management analysis at early development stages to check the efficiency of power strategies
 - e.g. DVFS, idle states, DPR, combination of strategies
 - What is the best option for my application ?
 - Complex to implement (kernel OS based)
 - → Provide implementation support

Energy efficiency improvements

- FoRTReSS: an integrated development methodology
 - Centered on energy efficiency
 - Improving global cohesion
 - Allow a better use (and full design) of advanced power strategies
 - Include power strategies in exploration to improve the relevance of solutions defined
 - Common decision support for exploration and strategies (same estimators for coherence of decisions)
 - Allow full prototyping of solutions (application and strategies)
 - Middleware
 - Development of advanced power strategies (in userpace Linux, patented technique)

http://fortress-toolbox.unice.fr/doku.php

System design / application mapping

- Core heterogeneity
 FPGA
- Dynamic Reconfiguration
- · Scheduling and Partitionning

Advanced power strategies Common decision support (models & estimators)

Power and resource management

- Power management (DVFS, idle modes)
- (Heterogeneous) energy aware scheduling
 - Low power scheduling
 - · Deadline (real-time) scheduling
 - Domain specific strategies

Energy efficiency improvements

- Application: License Plate Recognition
 - Gains from heter. only x4 x7
 - Gains from integr. méth. x0.9 x3
 - Total

- x4 x20
 - EDF EAHS

- Gains from EAHS heterogeneous scheduler
 - 65% (Zynq) and 15% (Virtex6/MB) in average
- Variations occur and depend on various parameters
 - Parallelism, partitionning, size, silicon technology, cores, ...
- → Necessity of a global and methodic approach to fully exploit the very high level of heterogeneity
 BENEFIC (CATRENE 2013 – 2016)

Conclusion and perspectives

Contributions to the exploitation of heterogeneity

- Energy modeling at higher abstraction levels
- Power and resource management: EA(H)S, ...
- The significant increase of complexity invoves major design challenges and needs comprehensive solutions to make the best out of heterogeneous resources, dynamic management and proper use of different technologies

Lessons

- The prevailing approach still addresses the different problems, technologies and techniques with high separation of concerns
- A strong potential lies in the investigation of more global approaches, but this requires ambitious research on the long run

Perspectives

- Confrontation with other application domains (Exascale, IA, aut. systems)
- Specialized strategies (AI, VoD, Exascale...)
- Technologies (DPR + DVFS, NV-RAM, Coarse Grained Reconf...)